Abstract

In this work, the formation of the virtual lateral root (VLR) is shown. The VLR is formed using the 2D simulation model of growth and cell divisions based on the concept of growth tensor, specified for radish. Growth is generated by the field of growth rates of an unsteady type (GT field). Principal directions of growth (PDGs) are assumed to define the orientation of cell divisions. Temporal sequences of the VLR formation are a result of an application of the GT field to the polygon meshwork representing cell pattern of already initiated primordium. The computer-generated lateral root (LR) develops realistically, and its cell pattern is vivid and similar to that observed in anatomical sections. The real and virtual LRs show similar cellular organization, both originate from a small group of cells situated in two-cell layers of the pericycle and both layers are engaged in the LR development. The LR formation seems to be controlled at the tensor level and individual cells presumably detect PDGs and obey them in the course of the cell divisions. PDGs are postulated to affect the cellular organization of the LR. Using the method of computer simulations, cellular aspects of the LR morphogenesis are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.