Abstract

Supershort avalanche electron beams (SAEBs) generated in air at atmospheric pressure have been studied with picosecond time resolution. It is established that an SAEB has a complicated structure that depends on the interelectrode gap width and cathode design. In a gas-filled diode with a small gap width, an SAEB current pulse with a full width at half maximum (FWHM) of ∼25 ps has been observed behind a collimator with a hole diameter of 1 mm. As the gap width is increased or decreased relative to the optimum value that corresponds to the maximum beam current, the SAEB current pulse shape changes and pulses with two peaks are more likely detected. The two-peak SAEB current pulse shape is retained behind aluminum foil with a thickness of 60 and 110 μm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.