Abstract

Fabricating electrically conductive porous electrode for supercapacitors from abundant raw materials remains a significant challenge in the field of energy storage. 3D porous carbon with high surface areas was synthesized by high-temperature carbonization and activation of lignin from cornstalks. When used as electrode materials in supercapacitors they showed a specific capacitance of 280 F g−1 and an area-specific capacitance of 1.3 F cm−2 at a current density of 0.5 A g−1. An assembled symmetric supercapacitor showed a high energy density of 7.7 Wh kg−1 at power density of 5200 W kg−1. It is demonstrated here that the use of lignin waste to fabricate electrode materials is feasible, affording lignin new value-added utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.