Abstract

(N1E,N4E)-N1,N4-bis(pyridin-2-yl) ethylene benzene-1,4-diamine (BPEBD) was synthesized by condensation of 2-acetyl pyridine and 1,4-diaminobenzene and its efficiency as a catalyst in Cu-based atom transfer radical polymerizations (ATRP) of methyl methacrylate (MMA) and styrene (S) was investigated. Linear first-order kinetic plots were obtained. However, there were induction periods. The apparent rate constant values of ATRP of MMA with CuCl/BPEBD catalyst system in toluene were found to be between 2.10 × 10−5 and 9.83 × 10−5 s−1, while they were between 6.67 × 10−6 and 3.30 × 10−5 s−1 in the case of acetonitrile, indicating the presence of a low radical concentration throughout the polymerizations. Low apparent rate constant values denote a good control over ATRP in general. Apparent rate constant vs [ligand]/[catalyst] ratio plots showed a maximum at the [ligand]/[catalyst] ratio of 1. In the ATRP of MMA in toluene, Mn,GPC values increased linearly with conversion and these molecular weight values were close to Mn,th in comparison to that of in acetonitrile. In the polymerization of S, the control of molecular weights was not good, although the reactions were first-order kinetics. Cyclic voltammetry measurements confirmed that CuCl/BPEBD complex in acetonitrile gives quasi-reversible redox couples, and copper (I) centers in CuCl/BPEBD binuclear catalyst complexes are readily oxidized and it potentially suits to facile ATRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.