Abstract

Ribbon synapses, for example of the retina, are specialized synapses that differ from conventional, phasically active synapses in several aspects. Ribbon synapses can tonically and yet very rapidly release neurotransmitter via synaptic vesicle exocytosis. This requires an optimization of the synaptic machinery and is at least partly due to the presence of synaptic ribbons that bind large numbers of synaptic vesicles and which are believed to participate in priming synaptic vesicles for exocytosis. In this paper we analyzed whether ribbon synapses of the retina employ similar priming factors, i.e. Munc13-1, as do conventional, non-ribbon containing phasically active synapses. We found that though present in conventional synapses of the retina Munc13-1 was completely absent from ribbon-containing synapses of the retina, both in the outer as well as in the inner plexiform layer. This indicates that ribbon synapses of the retina employ other, possibly more potent priming factors than phasically active conventional synapses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.