Abstract
The influence of excitatory and inhibitory coupling on synchronization depends on the temporal dynamics of the synapse. Slow excitation is desynchronizing whereas fast excitation tends to synchronize neuronal firing. Excitation via glutamatergic synapses, however, activates both ionotropic AMPA/kainate and NMDA receptors. Here we analyze the role of the synaptic NMDA component. We show that slowly bursting neurons desynchronize when connected by symmetrical NMDA synapses whereas they tend to synchronize when coupled with symmetrical AMPA/kainate synapses. This suggests that the effect on synchronization of an excitatory synapse also depends on the relative proportion of NMDA and AMPA/kainate synapses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.