Abstract

The union of the straight and over the point of reflection—reflected series of the arithmetic progression of primes results in the double density of occupation of integer positions. It is shown that the number of free positions left by the double density of occupation has a lower limit function, which is growing to infinity. The free positions represent equidistant primes to the point of reflection: in case the point of reflection is an even number, they satisfy Goldbach’s conjecture. The double density allows proving as well that at any distance from the origin large enough—the distance between primes is smaller, than the square root of the distance to the origin. Therefore, the series of primes represent a continuum and may be integrated. Furthermore, it allows proving that the largest gap between primes is growing to infinity with the distance and that the number of any two primes, with a given even number as the distance between them, is unlimited. Thus, the number of twin primes is unlimited as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.