Abstract
Enterococcus faecalis is a commensal bacterium of the human intestine and a major opportunistic pathogen in immunocompromised and elderly patients. The pathogenesis of E. faecalis infection relies in part on its capacity to colonize the gut. Following disruption of intestinal homeostasis, E. faecalis can overgrow, cross the intestinal barrier, and enter the lymph and bloodstream. To identify and characterize E. faecalis genes that are key to intestinal colonization, our strategy consisted in screening mutants for the following phenotypes related to intestinal lifestyle: antibiotic resistance, overgrowth, and competition against microbiota. From the identified colonization genes, epaX encodes a glycosyltransferase located in a variable region of the enterococcal polysaccharide antigen (epa) locus. We demonstrated that EpaX acts on sugar composition, promoting resistance to bile salts and cell wall integrity. Given that EpaX is enriched in hospital-adapted isolates, this study points to the importance of the epa variability as a key determinant for enterococcal intestinal colonization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.