Abstract
To understand the pulsatility of human blood flow in vivo, it is necessary to separately investigate (1) steady shear and oscillatory flow, and (2) the superposition of steady shear flow on oscillatory flow performed under in vitro conditions. In this study a variable steady shear rate was superimposed in parallel on oscillatory shear at a constant frequency (0.5 Hz) for human blood (45% hematocrit), and an aqueous polyacrylamide polymer solution (AP 30E, concentration 300 ppm). The effect of superposition of the above two shear flows on the viscoelasticity of blood was more pronounced for the elastic (η′') than for the viscous (η′) component of viscoelasticity. With increasing superimposed shear rate, both η′ and η′' decreased, especially at the low shear region. This behavior can be explained by the viscoelastic properties of blood and the phenomena of blood aggregation and disaggregation. Quantitatively, the dependence of the viscous component of complex viscosity on superimposed shear for both blood and polymer solution is described by a modified Carreau equation. The elastic component of complex viscosity decreased exponentially with increasing superimposed shear, and it is described by an exponential model. © 1997 Elsevier Science Ltd
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.