Abstract

Many real nonlinear evolution equations exhibiting soliton properties display a special superposition principle, where an infinite array of equally spaced, identical solitons constitutes an exact periodic solution. This arrangement is studied for the modified Korteweg–de Vries equation with positive cubic nonlinearity, which possesses algebraic solitons with nonvanishing far field conditions. An infinite sum of equally spaced, identical algebraic pulses is evaluated in closed form, and leads to a complex valued solution of the nonlinear evolution equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.