Abstract

The hydrogenation of CO2 to formic acid is an essential subject since formic acid is a promising hydrogen storage material and a valuable commodity chemical. In this study, we report for the first time the hydrogenation of CO2 to formic acid catalyzed by a Pd2+ catalyst, Pd-V/AC-air. The catalyst exhibited extraordinary catalytic activity toward the hydrogenation of CO2 to formic acid. The TON and TOF are up to 4790 and 2825 h-1, respectively, representing the top level among reported heterogeneous Pd catalysts. By combining a study of first-principles density functional theory with experimental results, the superiority of Pd2+ over Pd0 was confirmed. Furthermore, the presence of V modified the electronic state of Pd2+, thus promoting the reaction. This study reports the effect of metal valence and electronic state on the catalytic performance for the first time and provides a new prospect for the design of an efficient heterogeneous catalyst for the hydrogenation of CO2 to formic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.