Abstract

The decrease in the pH of oceans and the increase in their temperature are the two main problems observed in the marine ecosystems due to the increasing emission of CO2 in the atmosphere. Both conditions can affect the ecological processes of reproduction, recruitment and survival of the marine biota. Thus, the objective of the present study was to evaluate the effects of pH decrease and temperature increase of seawater on the fertilization success and embryo-larval development of a species of tropical sea urchin. For this purpose, fertilization success (gametes) and embryo-larval development rate were determined by exposing gametes and embryos to decreasing pH values (8.0 (control), 7.7, and 7.4) and increasing temperatures (26 (control), 28, 30, 34, and 38 °C). These conditions were tested associated with each other (in synergy). The gamete test was sensitive to all investigated scenarios, the fertilization success was significantly reduced in the conditions of increased temperature (28, 30, 34, and 38 °C) associated with the ideal pH (pH 8.0) and the conditions of reduced pH (pH 7.7, and 7.4), remaining unchanged only in the ideal condition (pH 8.0 + 26 °C). However, the embryo test displayed enhanced sensitivity in the scenarios of temperature increase (28, 30, 34, and 38 °C) associated with pH decrease conditions. A significantly reduction of 29%, 23% and 10% was observed in all tested pH values at 38 °C, when compared to the control group (80%, 79.5% and 63%, respectively). Therefore, the present study suggests that the occurrence of both scenarios may have a significant impact, in the coming years, on the population of Echinometra lucunter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.