Abstract
In this article the impacts of quantum efficiency and bandwidth of PIN photodiodes under non-uniform illumination conditions are investigated. An absorption region is divided into the number of arbitrary layers and the continuity equations for each layer are solved with assuming that the carrier’s drift velocity is constant in each layer. Also the impact of transit time and capacitive effects of bandwidth were studied with considering the bias voltage, width of absorption region and temperature. The results show that with considering the capacitive effects, the bandwidth is increased by increase in temperature and bias voltage. We observe the effect of incident optical radiation from two n and p sides and also its impact on bandwidth and quantum efficiency. The results show more impact of radiation from n region compared to p region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.