Abstract
The object of our work is the preparation of a mucoadhesive drug delivery system intended for intravesical application. In the present work, microspheres with Eudragit RS matrix polymer and different mucoadhesive polymers, i.e. chitosan hydrochloride (Ch), sodium salt of carboxymethyl cellulose (CMC) and polycarbophil (PC) were prepared to evaluate their influence on the mucoadhesive properties of microspheres. Different parameters were determined and their influence on pipemidic acid release from microspheres adhered on intact and damaged pig vesical mucosa was evaluated: swelling of polymers, mucoadhesion strength of polymeric films and drug dissolution according to USP XXIV method. The dissolution rate from microspheres containing different mucoadhesive polymers decreases as follows: PC>Ch>CMC. PC swelled to the largest volume among all polymers and as a result the fastest release of the drug from PC microspheres was obtained. The release rate of pipemidic acid from microspheres adhered on intact mucosa followed the order PC>CMC>Ch. These results show that both drug dissolution and mucoadhesion strength strongly influence drug release from adhered microspheres. The slowest release from Ch microspheres could be interpreted by the largest mucoadhesion strength of Ch polymeric films. The release rate of pipemidic acid from microspheres adhered on damaged mucosa followed the order PC=Ch>CMC. The results obtained on pathologically changed mucosa model support the indication of the role of glycosaminoglycans and polymer charge in the mucoadhesion process on vesical mucosa. Analysis of release data shows that the drug dissolution profiles follow the Higuchi kinetics better than the release profiles from adhered microspheres and different kinetics might be a consequence of different release mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.