Abstract

Cellular patterns appear spontaneously in a number of nonequilibrium systems governed by the dynamics of a complex field. In the case of the complex Ginzburg-Landau equation, disordered cells of effectively frozen spirals appear, separated by thin walls (shocks), on a scale much larger than the basic wavelength of the spirals. We show that these structures can be understood in very simple terms. In particular, we show that the walls are, to a good approximation, segments of hyperbolae and this allows us to construct the wall pattern given the vortex centers and a phase constant for each vortex. The fact that the phase is only defined up to an integer multiple of 2π introduces a quantization condition on the sizes of the smallest spiral domains. The transverse structure of the walls is analyzed by treating them as heteroclinic connections of a system of ordinary differential equations. The structure depends on the angle the wall makes with the local phase contours, and the behavior can be either monotonic or oscillatory, depending on the parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.