Abstract
We classify the Morse indices for rank-convex quadratic forms defined on the space of linear elastic strains in two- and three-dimensional linear elasticity. For the higher-dimensional case n > 3, we give a universal lower bound of the largest possible Morse index and various upper bound of this index. We show in the three-dimensional case that the Morse index is at most 1, and in this case the nullity cannot exceed 2. Examples are given that show that the estimates can be reached. We apply the results to study the critical points for smooth rank-one convex functions defined on the space of linear strains. We also examine an example and construct a quasiconvex function that vanishes in a finite set in the direct sum of the null subspace and the negative subspace of the rank-one quadratic form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.