Abstract
The structural features of dinoflagellate nuclei are distinct from those of other eukaryotes in several respects, and the mechanisms of DNA replication and transcription are almost completely unknown. In this study we investigated the structure and organization of the gene coding for luciferase (LCF), the enzyme catalyzing the bioluminescent reaction in the dinoflagellate Gonyaulax polyedra. The genomic lcf sequence, including its flanking regions, were completely determined. The transcription initiation site was identified using primer extension and RNase protection assays. Sequence analysis shows that, like the luciferin-binding protein gene (lbp) from G. polyedra, lcf does not contain introns. Analysis of results from genomic Southern blots, inverse PCR, and sequencing revealed that the lcf gene is organized as tandem repeats in the genome. The spacer region between the lcf genes, which very likely contains the promoter elements necessary for transcription initiation, has no TATA box or other known promoter elements or consensus sequences. However, a conserved sequence motif was identified by comparing the two intergene spacer regions of lcf and the peridinin chlorophyll protein gene, pcp; a novel 13 nt sequence, CGTGAACGCAGTG, which might be a dinoflagellate promoter, was found to be present in both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.