Abstract
A previous study on the distribution of histone H1 subfractions in chromatin suggested that these proteins differ in the protection they confer to DNA. To elucidate further this suggestion, reconstitution experiments were carried out with purified H1 subfractions (H1-1, H1-2, H1o) and H1-depleted chromatin. We have studied the structural properties of H1o as compared to those of other H1 fractions by electrophoretic analysis of DNA and mononucleosomes obtained after micrococcal nuclease digestion, thermal denaturation, and electron microscopy. The three fractions studied reassociate to H1-depleted chromatin. However, differences in the extent of DNA protection are observed between H1o and the other fractions: H1o induces a more rapid degradation of long oligomers into mononucleosomes; these mononucleosomes bearing H1o only, have a greater electrophoretic mobility; furthermore, thermal denaturation shows that a small fraction of DNA is less efficiently protected by H1o than by the other fractions. Electron microscopy, on the other hand, shows that these differences are not due to areas of chromatin devoid of H1o in the reconstitute and that the reconstituted samples are able, under proper ionic conditions, to refold in a higher-order structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.