Abstract
The aim of this paper is to illustrate the validity and efficiency of iterative methods for solving large linear systems arising from the finite element discretizations of the equation governing conduction-controlled solidi fication processes. Starting from the basic enthalpy equation, two alternative formulations are obtained and fixed-grid finite element discretizations are devel oped. These discretizations yield a set of nonlinear equations that are linearized using the Newton-Raph son scheme. The linearized equations are used as a basis for evaluating different iterative methods of the conjugate gradient type. Symmetric scaling and in complete factorization preconditioning of the linear equations are used to improve the convergence prop erties of the iterative methods. Vectorization and paral lelization are also employed to make full use of the CRAY-2 supercomputer. The results indicate that the implementation of currently available iterative solvers leads to efficient solution methodologies for phase change problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Supercomputing Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.