Abstract

We test a method for computing the static quark-antiquark potential in lattice QCD, which is not based on Wilson loops, but where the trial states are formed by eigenvector components of the covariant lattice Laplace operator. The runtime of this method is significantly smaller than the standard Wilson loop calculation, when computing the static potential not only for on-axis, but also for many off-axis quark-antiquark separations, i.e., when a fine spatial resolution is required. We further improve the signal by using multiple eigenvector pairs, weighted with Gaussian profile functions of the eigenvalues, providing a basis for a generalized eigenvalue problem (GEVP), as it was recently introduced to improve distillation in meson spectroscopy. We show results with the new method for the static potential with dynamical fermions and demonstrate its efficiency compared to traditional Wilson loop calculations. The method presented here can also be applied to compute hybrid or tetra-quark potentials and to static-light systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.