Abstract
We study the impact of the tidal field on the survivability of star clusters following instantaneous gas expulsion. Our model clusters are formed with a centrally-peaked star-formation efficiency profile as a result of star-formation taking place with a constant efficiency per free-fall time. We define the impact of the tidal field as the ratio of the cluster half-mass radius to its Jacobi radius immediately after gas expulsion, $\lambda = r_{h}/R_{J}$. We vary $\lambda$ by varying either the Galactocentric distance, or the size (hence volume density) of star clusters. We propose a new method to measure the violent relaxation duration, in which we compare the total mass-loss rate of star clusters with their stellar evolutionary mass-loss rate. That way, we can robustly estimate the bound mass fraction of our model clusters at the end of violent relaxation. The duration of violent relaxation correlates linearly with the Jacobi radius, when considering identical clusters at different Galactocentric distances. In contrast, it is nearly constant for the solar neighbourhood clusters, slightly decreasing with $\lambda$. The violent relaxation does not last longer than 50 Myr in our simulations. Identical model clusters placed at different Galactocentric distances have the same final bound fraction, despite experiencing different impacts of the tidal field. The solar neighbourhood clusters with different densities experience only limited variations of their final bound fraction. In general, we conclude that the cluster survivability after instantaneous gas expulsion, as measured by their bound mass fraction at the end of violent relaxation, $F_{bound}$, is independent of the impact of the tidal field, $\lambda$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.