Abstract
We consider a simple assembly line balancing problem in which each element of the partially ordered set of assembly operations must be assigned to one element of the set of workstations used for processing the operations. An objective is minimizing the product of the number of workstations used in the line balance and the cycle time of the line balance among all admissible line balances. An admissible line balance is a partition of all assembly operations into at least two workstations without violating the precedence relations among the assembly operations. We assume that during the lifespan of the assembly line, the duration of each manual operation may deviate from an initially estimated value, while the duration of each automated operation is deterministic. We conduct the stability analysis of an optimal line balance. First, we derive a sufficient and necessary condition for an optimal line balance to be stable. Second, we show that the stability radius of an optimal line balance could be infinitely large. We also establish some lower and upper bounds for a finite stability radius. Third, we derive formulae that are needed and develop an algorithm for obtaining the stability radius of an optimal line balance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.