Abstract

In recent years, many theoreticians and experimentalists have concentrated on the processes that affect the stability of predator–prey systems. But few papers have addressed the Allee effect with focus on the their stability. In this paper, we select two classical models describing predator–prey systems and introduce the Allee effects into the dynamics of both the predator and prey populations in these models, respectively. By combining mathematical analysis with numerical simulation, we have shown that the Allee effect may be a destabilizing force in predator–prey systems: the equilibrium point of the system could be changed from stable to unstable or otherwise, the system, even when it is stable, will take much longer time to reach the stable state. We also conclude that the equilibrium of the prey population will be enlarged due to the Allee effect of the predator, but the Allee effects of the prey may decrease the equilibrium value of the predator, or that of both the predator and prey. It should also be pointed out that the impact of the Allee effects of predator and prey due to different mechanisms on different predator–prey systems could also vary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.