Abstract

The spliceosome is a massive complex of 5 RNAs and many proteins that associate to catalyze precursor messenger RNA splicing. The process of splicing involves two phosphoryl transfer reactions that result in intron excision and ligation of the flanking exons. Since it is required for normal protein production in eukaryotic cells, pre-mRNA splicing is an essential step in gene expression. Although high resolution structural views of the spliceosome do not yet exist, a growing body of evidence indicates that the spliceosome is a magnesium-dependent enzyme that utilizes catalytic metal ions to stabilize both transition states during the two phosphoryl transfer steps of splicing. A wealth of data also indicate that the core of the spliceosome is comprised of RNA, and suggest that the spliceosome may be a ribozyme. This chapter presents the evidence for metal ion catalysis by the spliceosome, draws comparisons to similar RNA enzymes, and discusses the future directions for research into the mechanism of pre-mRNA splicing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.