Abstract
We study the negative gradient flow of the spinorial energy functional (introduced by Ammann, Wei{\ss}, and Witt) on 3-dimensional Berger spheres. For a certain class of spinors we show that the Berger spheres collapse to a 2-dimensional sphere. Moreover, for special cases, we prove that the volume-normalized standard 3-sphere together with a Killing spinor is a stable critical point of the volume-normalized version of the flow. Our results also include an example of a critical point of the volume-normalized flow on the 3-sphere, which is not a Killing spinor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.