Abstract

Although people are generally interested in how the brain functions, neuroscience education for the public is hampered by a lack of low cost and engaging teaching materials. To address this, we developed an open-source tool, the SpikerBox, which is appropriate for use in middle/high school educational programs and by amateurs. This device can be used in easy experiments in which students insert sewing pins into the leg of a cockroach, or other invertebrate, to amplify and listen to the electrical activity of neurons. With the cockroach leg preparation, students can hear and see (using a smartphone oscilloscope app we have developed) the dramatic changes in activity caused by touching the mechanosensitive barbs. Students can also experiment with other manipulations such as temperature, drugs, and microstimulation that affect the neural activity. We include teaching guides and other resources in the supplemental materials. These hands-on lessons with the SpikerBox have proven to be effective in teaching basic neuroscience.

Highlights

  • Is neuroscience absent from most K-12 curricula, but even in college, students must wait until upper level science courses to gain exposure to principles of brain function [1]

  • We hypothesized that neuroscience education was missing from K12 curricula not because of a lack of interest [2], but due to a lack of simple, compelling, and inexpensive tools to investigate and understand neurons

  • We found that approximately 75–85% of attendees could build their SpikerBox correctly from scratch without any errors

Read more

Summary

Introduction

Is neuroscience absent from most K-12 curricula, but even in college, students must wait until upper level science courses to gain exposure to principles of brain function [1]. While students can observe the anatomical brain structure from models or preserved tissues, students cannot observe the dynamic electrical structure of the brain without conducting experiments on living neurons firing action potentials. This presents a challenge for K-12 teachers as regulatory restrictions prevent using standard vertebrate models (rats, mice, fish, and frogs) in the classroom for in vivo experiments. In order to overcome these issues, we developed a low-cost tool, the SpikerBox (Figure 1), that enables students and teachers to listen to and record invertebrate action potentials (‘‘spikes’’) with minimal dissection skill and training

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.