Abstract

The spherical k-means problem (SKMP) is an important variant of the k-means clustering problem (KMP). In this paper, we consider the SKMP, which aims to divide the n points in a given data point set $${\mathcal {S}}$$ into k clusters so as to minimize the total sum of the cosine dissimilarity measure from each data point to their respective closest cluster center. Our main contribution is to design an expected constant approximation algorithm for the SKMP by integrating the seeding algorithm for the KMP and the local search technique. By utilizing the structure of the clusters, we further obtain an improved LocalSearch++ algorithm involving $$\varepsilon k$$ local search steps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.