Abstract

A new algorithm for modeling radiative transfer in inhomogeneous three-dimensional media is described. The spherical harmonics discrete ordinate method uses a spherical harmonic angular representation to reduce memory use and time computing the source function. The radiative transfer equation is integrated along discrete ordinates through a spatial grid to model the streaming of radiation. An adaptive grid approach, which places additional points where they are most needed to improve accuracy, is implemented. The solution method is a type of successive order of scattering approach or Picard iteration. The model computes accurate radiances or fluxes in either the shortwave or longwave regions, even for highly peaked phase functions. Broadband radiative transfer is computed efficiently with a k distribution. The results of validation tests and examples illustrating the efficiency and accuracy of the algorithm are shown for simple geometries and realistic simulated clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.