Abstract

In this paper, we consider the fractional complex Ginzburg-Landau equation in two spatial dimensions with the dissipative effect given by a fractional Laplacian. The periodic initial value problem of the fractional complex Ginzburg-Landau equation is discretized fully by Galerkin-Fourier spectral method, and the dynamical behaviors of the discrete system are studied. The existence and convergence of global attractors of the discrete system are obtained by a priori estimates and error estimates of the discrete solution. The numerical stability and convergence of the discrete scheme are proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.