Abstract

We present the intrinsic spectral energy distribution (SED) of the NLS1 Arakelian 564, constructed with contemporaneous data obtained during a multi-wavelength, multi-satellite observing campaign in 2000 and 2001. We compare it with that of the NLS1 Ton S180 and with those obtained for BLS1s to infer how the relative accretion rates vary among the Sy1 population. Although the peak of the SED is not well constrained, most of the energy is emitted in the 10-100 eV regime, constituting roughly half of the emitted energy in the optical/X-ray ranges. This is consistent with a primary spectral component peaking in the extreme UV/soft X-ray band, and disk-corona models, hence high accretion rates. Indeed, we estimate that \dot{m}~1. We examine the emission lines in its spectrum, and we constrain the physical properties of the line-emitting gas through photoionization modeling. The line-emitting gas is characterized by log n~11 and log U~0, and is stratified around log U~0. Our estimate of the radius of the H\beta-emitting region ~10 \pm 2 lt-days is consistent with the radius-luminosity relationships found for Sy1 galaxies. We also find evidence for super-solar metallicity in this NLS1. We show that the emission lines are not good diagnostics for the underlying SEDs and that the absorption line studies offer a far more powerful tool to determine the ionizing continuum of AGNs, especially if comparing the lower- and higher-ionization lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.