Abstract
AbstractThe space-time conservation element and solution element (CE/SE) method is proposed for solving a conservative interface-capturing reduced model of compressible two-fluid flows. The flow equations are the bulk equations, combined with mass and energy equations for one of the two fluids. The latter equation contains a source term for accounting the energy exchange. The one and two-dimensional flow models are numerically investigated in this manuscript. The CE/SE method is capable to accurately capture the sharp propagating wavefronts of the fluids without excessive numerical diffusion or spurious oscillations. In contrast to the existing upwind finite volume schemes, the Riemann solver and reconstruction procedure are not the building block of the suggested method. The method differs from the previous techniques because of global and local flux conservation in a space-time domain without resorting to interpolation or extrapolation. In order to reveal the efficiency and performance of the approach, several numerical test cases are presented. For validation, the results of the current method are compared with other finite volume schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.