Abstract
Abstract Soybean (Glycine max) is a globally important crop; however, its productivity is severely impacted by phosphorus (P) deficiency. Understanding the transcriptional regulation of low P (LP) response mechanisms is essential for enhancing soybean P use efficiency. In this study, we found that the Nuclear Factor-Y (NF-Y) transcription factor GmNF-YC4, in addition to its previously discovered role in regulating flowering time, possesses other functions in modulating root morphology and P uptake. Knockout of GmNF-YC4 notably boosted root proliferation and P uptake while also influencing the expression of genes related to LP stress. GmNF-YC4 acts as a specific DNA-binding transcriptional repressor, modulating the expression of the soybean α-EXPANSIN 7 (GmEXPA7) gene, which encodes a cell-wall-loosening factor, through direct binding to its promoter region. Further investigation revealed that GmEXPA7 expression is predominantly root-specific and induced by LP. Moreover, overexpression of GmEXPA7 in soybean hairy roots enhanced LP tolerance by stimulating root growth and P uptake. We further screened and obtained more potential target genes of GmNF-YC4 via DNA affinity purification sequencing, including those related to LP stress. These findings underscore the pivotal role of the GmNF-YC4-GmEXPA7 module as a key regulator in mitigating LP stress in soybeans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.