Abstract

Background/MethodologyA significant implication of increasing urbanization is anthropogenic noise pollution. Although noise is strongly associated with disruption of animal communication systems and negative health effects for humans, the study of these consequences at ecologically relevant spatial and temporal scales (termed soundscape ecology) is in early stages of application. In this study, we examined the above- and below-water soundscape of recreational and residential lakes in the region surrounding a large metropolitan area. Using univariate and multivariate approaches we test the importance of large- and local-scale landscape factors in driving acoustic characteristics across an urbanization gradient, and visualize changes in the soundscape over space and time.Principal FindingsAnthropogenic noise (anthrophony) was strongly predicted by a landcover-based metric of urbanization (within a 10 km radius), with presence of a public park as a secondary influence; this urbanization signal was apparent even in below-water recordings. The percent of hourly measurements exceeding noise thresholds associated with outdoor disturbance was 67%, 17%, and 0%, respectively, for lakes characterized as High, Medium, and Low urbanization. Decreased biophony (proportion of natural sounds) was associated with presence of a public park followed by increased urbanization; time of day was also a significant predictor of biophony. Local-scale (shoreline) residential development was not related to changes in anthrophony or biophony. The patterns we identify are illustrated with a multivariate approach which allows use of entire sound samples and facilitates interpretation of changes in a soundscape.Conclusions/SignificanceAs highly valued residential and recreation areas, lakes represent everyday soundscapes important to both humans and wildlife. Our findings that many of these areas, particularly those with public parks, routinely experience sound types and levels associated with disturbance, suggests that urban planners need to account for the effect of increasing development on soundscapes to avoid compromising goals for ecological and human health.

Highlights

  • IntroductionDevelopment, and resource extraction have drastically altered landscapes around the globe [1,2]

  • Rates of population growth, development, and resource extraction have drastically altered landscapes around the globe [1,2]

  • Initiated by the Noise Act in 1972, the United States’ Environmental Protection Agency (EPA) defined thresholds of noise considered detrimental to health, and which are still used as guidelines for environmental noise management today [7]

Read more

Summary

Introduction

Development, and resource extraction have drastically altered landscapes around the globe [1,2]. In undeveloped or protected natural areas, where lack of access may preclude other forms of landscape alteration, noise pollution remains a primary environmental threat [4,5]. Much of this research is based in the fields of occupational health or urban planning, with a focus on acute levels or specific types of noise (e.g., air or road traffic). While this provides an important foundation of knowledge, a key limitation is that management of environmental noise at larger scales depends on understanding the impacts of noise levels but of differing types and quality

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.