Abstract

A new approach for the solution of the steady incompressible Navier–Stokes equations in a domain bounded in part by a free surface is presented. The procedure is based on the finite difference technique, with the non-staggered grid fractional step method used to solve the flow equations written in terms of primitive variables. The physical domain is transformed to a rectangle by means of a numerical mapping technique. In order to design an effective free solution scheme, we distinguish between flows dominated by surface tension and those dominated by inertia and viscosity. When the surface tension effect is insignificant we used the kinematic condition to update the surface; whereas, in the opposite case, we used the normal stress condition to obtain the free surface boundary. Results obtained with the improved boundary conditions for a plane Newtonian jet are found to compare well with the available two-dimensional numerical solutions for Reynolds numbers, up to Re=100, and Capillary numbers in the range of 0≤Ca<1000. Copyright © 2001 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.