Abstract

Wilson disease ATPase (ATP7B) has been implicated in the resistance of cancer cells to cisplatin. Using a simple in vivo assay in bacterial culture, in the present study we demonstrate that ATP7B can confer resistance to cisplatin by sequestering the drug in its N-terminal metal-binding domain without active drug extrusion from the cell. Expression of a protein fragment containing four N-terminal MBRs (metal-binding repeats) of ATP7B (MBR1-4) protects cells from the toxic effects of cisplatin. One MBR1-4 molecule binds up to three cisplatin molecules at the copper-binding sites in the MBRs. The findings of the present study suggest that suppressing enzymatic activity of ATP7B may not be an effective way of combating cisplatin resistance. Rather, the efforts should be directed at preventing cisplatin binding to the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.