Abstract
The SLX4 Fanconi anemia protein is a tumor suppressor that may act as a key regulator that engages the cell into specific genome maintenance pathways. Here, we show that the SLX4 complex is a SUMO E3 ligase that SUMOylates SLX4 itself and the XPF subunit of the DNA repair/recombination XPF-ERCC1 endonuclease. This SLX4-dependent activity is mediated by a remarkably specific interaction between SLX4 and the SUMO-charged E2 conjugating enzyme UBC9 and relies not only on newly identified SUMO-interacting motifs (SIMs) in SLX4 but also on its BTB domain. In contrast to its ubiquitin-binding UBZ4 motifs, SLX4 SIMs are dispensable for its DNA interstrand crosslink repair functions. Instead, while detrimental in response to global replication stress, the SUMO E3 ligase activity of the SLX4 complex is critical to prevent mitotic catastrophe following common fragile site expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.