Abstract
We study a 2 × 2 system of balance laws that describes the evolution of a granular material (avalanche) flowing downhill. The original model was proposed by Hadeler and Kuttler (Granul Matter 2:9–18, 1999). The Cauchy problem for this system has been studied by the authors in recent papers (Amadori and Shen in Commun Partial Differ Equ 34:1003–1040, 2009; Shen in J Math Anal Appl 339:828–838, 2008). In this paper, we first consider an initial-boundary value problem. The boundary condition is given by the flow of the incoming material. For this problem we prove the global existence of BV solutions for a suitable class of data, with bounded but possibly large total variations. We then study the “slow erosion (or deposition) limit”. We show that, if the thickness of the moving layer remains small, then the profile of the standing layer depends only on the total mass of the avalanche flowing downhill, not on the time-law describing the rate at which the material slides down. More precisely, in the limit as the thickness of the moving layer tends to zero, the slope of the mountain is provided by an entropy solution to a scalar integro-differential conservation law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.