Abstract

BackgroundHistorically the main source of laboratory Xenopus laevis was the environment. The increase in genetically altered animals and evolving governmental constraints around using wild-caught animals for research has led to the establishment of resource centres that supply animals and reagents worldwide, such as the European Xenopus Resource Centre. In the last decade, centres were encouraged to keep animals in a “low microbial load” or “clean” state, where embryos are surface sterilized before entering the housing system; instead of the conventional, “standard” conditions where frogs and embryos are kept without prior surface treatment. Despite Xenopus laevis having been kept in captivity for almost a century, surprisingly little is known about the frogs as a holobiont and how changing the microbiome may affect resistance to disease. This study examines how the different treatment conditions, “clean” and “standard” husbandry in recirculating housing, affects the skin microbiome of tadpoles and female adults. This is particularly important when considering the potential for poor welfare caused by a change in husbandry method as animals move from resource centres to smaller research colonies.ResultsWe found strong evidence for developmental control of the surface microbiome on Xenopus laevis; adults had extremely similar microbial communities independent of their housing, while both tadpole and environmental microbiome communities were less resilient and showed greater diversity.ConclusionsOur findings suggest that the adult Xenopus laevis microbiome is controlled and selected by the host. This indicates that the surface microbiome of adult Xenopus laevis is stable and defined independently of the environment in which it is housed, suggesting that the use of clean husbandry conditions poses little risk to the skin microbiome when transferring adult frogs to research laboratories. This will have important implications for frog health applicable to Xenopus laevis research centres throughout the world.

Highlights

  • The main source of laboratory Xenopus laevis was the environment

  • We investigate how the skin microbiome changes between the two most commonly used Xenopus laevis husbandry conditions, “standard” and “clean” housing, using 16S Ribosomal RNA (rRNA) amplicon sequencing

  • Shannon bacterial diversity appears to be higher for tadpoles than for adult frogs for both standard (t = − 3.39; df = 10.3; p = 0.007) and clean (t = − 3.11; df = 14.8; p = 0.007) conditions

Read more

Summary

Introduction

The main source of laboratory Xenopus laevis was the environment. The increase in genetically altered animals and evolving governmental constraints around using wild-caught animals for research has led to the establishment of resource centres that supply animals and reagents worldwide, such as the European Xenopus Resource Centre. This study examines how the different treatment conditions, “clean” and “standard” husbandry in recirculating housing, affects the skin microbiome of tadpoles and female adults This is important when considering the potential for poor welfare caused by a change in husbandry method as animals move from resource centres to smaller research colonies. The South African clawed frog (Xenopus laevis), is a model species utilised worldwide, first used in the development of pregnancy tests [1, 2]. Their availability, together with their ability to generate many large embryos throughout the year, marked their establishment as a research model for developmental biology, biochemistry. Studies on the skin microbiota of amphibians have highlighted the link between microbiome species richness with their ability to resist pathogens and overall health [20,21,22,23,24,25]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.