Abstract

The relative steady-state abundance of cardiac and skeletal α-actin mRNAs at different stages of embryonic skeletal and cardiac (striated) muscle development was determined by a reverse transcriptase extension assay employing an single oligonucleotide primer complementary to a perfectly conserved region near the 5′ end of both mRNAs. Both mRNAs were found to be present at every stage of embryonic striated muscle development tested, including the earliest assayable stages of limb muscle and cardiac muscle development. At early stages of skeletal muscle development the two mRNAs are present at similar levels while at later stages the abundance of the skeletal α-actin mRNA far exceeds that of the cardiac α-actin mRNA. Both mRNAs are also present at similar levels throughout embryonic cardiac muscle development while in adult cardiac muscle the cardiac α-actin mRNA predominates over the skeletal α-actin mRNA. These results for early embryonic striated muscle, in combination with previous results with late embryonic and adult striated muscle, indicate that both genes are coexpressed throughout striated muscle ontogeny. These two genes may not, therefore, be regulated under unique tissue-specific regulatory programs but each may have acquired regulatory elements which confer important quantitative differences in their level of expression in mature striated muscle cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.