Abstract

Previous calculations with a time-dependent drift model revealed the model to be less successful in describing time-dependent modulation during periods of moderate to large solar activity. In this paper, it is argued that a major reason for this is that the previously used wavy heliospheric neutral sheet (HNS) description was based on an idealized HNS not subject to any spatial evolution while propagating radially outward. It is suggested that the deformation and compression of HNS wave peaks will lead to significant increases in the crossfield diffusion across these peaks (short-circuiting). The cosmic rays will effectively experience reduced tilt angles and therefore a reduction in the integrated HNS modulation effect between an observer and the heliospheric boundary. During periods of moderate to large solar activity these HNS deformation processes are progressively more frequent and should lead to a significant reduction in time-dependent modulation as predicted by drift models. Calculations done with radially propagating tilt angles that effectively decrease with radial distance give the expected reduction which improves the general description of modulation from 1987-1988.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.