Abstract

Herein, the major biochar properties were correlated with electron transfer of zerovalent iron (ZVI) and contribution of biomass constituents to biochar property was ascertained to optimize electron transfer of ZVI. To this end, five respective stalk-type and wood-type lignocellulosic biomasses were pyrolzed at 600 °C to prepare biochars to harbor ZVI (ZVI/BC). Thermogravimetric analysis demonstrated woody biomasses decomposed more intensively at higher temperature relative to stalky biomass. ZVI/BC were characterized with Raman, X-ray diffraction, and electrochemical analyses including electron donating capacity (EDC) and electron accepting capacity (EAC). Pearson correlation and partial least-squares (PLS) analyses confirmed that Cr(VI) reduction capacity was negatively related to Tafel corrosion potential and intensity ratio of ID/IG, but significantly positively-related to EDC of BC, in which EDC was a predominant attribute to contribute to reductive capacity toward Cr(VI) reduction. That is, greater EDC and higher graphitic carbon structure of biochar due to cellulose and hemicellulose components favor electron transfer of ZVI toward Cr(VI) reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.