Abstract

Genetic markers are widely applied in the study of genetic diversity for many species. The approach incorporates a Polymerase Chain Reaction (PCR) amplification of targeted sequences in the genome. Crucial for the overall success of a PCR experiment is the careful design of synthetic oligonucleotide primers. Ideally designed primer pairs will ensure the efficiency and specificity of the amplification reaction, resulting in a high yield of the desired amplicon. Important criteria such as primer-sequence, -length, and -melting temperature (Tm) are fundamental for the selection of primers and amplification of targeted nucleotide sequences from a DNA template. There are many computational tools available to assist with critical bioinformatics issues related to primer design. These resources allow the user to define parameters and criteria that need to be taken into account when designing primers. Following the initial in silico selection, a primer pair should be further tested in vivo for their amplification efficiency and robustness.Using examples taken from genetic diversity studies in a marine crustacean, this chapter provides outlines for the application of PCR technology and discusses details for the design of primers for the development and characterization of microsatellite and SNP-markers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.