Abstract

We have refined our system for calculating the signa; ture of an interacting air gun array from near-field measurements of its pressure field. We use an iterative technique to calculate a notional array of noninteracting sources from the near-field hydrophone measurements The notional signatures form the basis for calculating the array signature in any direction. The success of our iterative technique depends upon prudent positioning of the hydrophones, one close to each air gun. In normal operation the forward motion of the hydrophones and upward motion of the air gun bubbles are important effects which must be included in the equations. A linear model for this motion is adequate and improves the method significantly. The vertically traveling “far-field” signature calculated by our extended method matches an equivalent “far-field” measurement very closely. We present array signatures obtained in very bad weather conditions (force 8). In this extreme test the signatures are very stable from shot to shot. Therefore it is not necessary to calculate the array signature every shot; however, continuous recording of near-fields should still be carried out as a check on signature stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.