Abstract

Many proteins, including the alpha subunit of the signal recognition particle receptor (SR alpha), are targeted within the cell by poorly defined mechanisms. A 140 residue N-terminal domain of SR alpha targets and anchors the polypeptide to the endoplasmic reticulum membrane by a mechanism independent of the pathway involving the signal recognition particle. To investigate the mechanism of membrane anchoring, translation pause sites on the SR alpha mRNA were used to examine the targeting of translation intermediates. A strong pause site at nucleotide 507 of the mRNA open reading frame corresponded with the shortest nascent SR alpha polypeptide able to assemble on membranes. An mRNA sequence at this pause site that resembles a class of viral -1 frameshift sequences caused translation pausing when transferred into another mRNA context. Site-directed mutagenesis of the mRNA greatly reduced translation pausing without altering the polypeptide sequence, demonstrating unambiguously a role for this mRNA sequence in translation pausing. SR alpha polypeptides synthesized from the non-pausing mRNA were impaired in co-translational membrane anchoring. Furthermore, co-translational membrane assembly of SR alpha appears to anchor polysomes translating SR alpha to membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.