Abstract

Riemerella anatipestifer causes epizootic infectious disease in poultry and serious economic losses especially to the duck industry. However, little is known regarding the molecular basis of its pathogenesis. The ability to acquire iron under low-iron conditions is related to the virulence of a variety of bacterial pathogens. In this study, a sip (Riean_1281) deletion mutant CH3Δsip was constructed and characterized for iron-limited growth, biofilm formation, and pathogenicity to ducklings. Results showed that siderophore-interacting protein (SIP) was involved in iron utilization and the sip deletion significantly reduced biofilm formation and adherence to and invasion of Vero cells. In addition, the sip gene was absent in 1 of 24 (4.17%) virulent strains and 2 of 3 (66.7%) avirulent strains of R. anatipestifer, and the sip gene from six R. anatipestifer strains, which belong to serotypes 1, 2, and 10, respectively, shared 100% amino acid identities to those of R. anatipestifer strains DSM15868 and RA-GD. These results suggested that siderophore-mediated iron acquisition may be an important iron-uptake pathway in R. anatipestifer. Animal experiments indicated that the median lethal dose of the CH3Δsip mutant in ducklings was about 35-fold higher than that of the wild-type CH3 strain. Thus, our results demonstrated that R. anatipestifer SIP was involved in iron acquisition and necessary for its optimal virulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.