Abstract
Given a graph G, a cluster C is a connected subgraph of G, and C is called a faulty cluster if all nodes in C are faulty. Given an n-dimensional star graph G/sub n/ with n-2 faulty clusters of diameter at most 2, it has been shown by the authors (1994) that any two non-faulty nodes s and t of G/sub n/ can be connected by a fault-free path of length at most d(G/sub n/)+6 in O(n/sup 2/) time, where d(G/sub n/)=[(3(n-1))/2] is the diameter of G/sub n/. In this paper, we prove that a fault-free path s/spl rarr/t of length at most d(G/sub n/)+1 if n>10 or n is odd, or d(G/sub n/)+2 otherwise, can be found in O(n/sup 2/) time. The length of the path s/spl rarr/t is optimal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.