Abstract
AbstractThe s‐homodesmotic method for computing conventional strain energies (CSE) has been extended for the first time to bicyclic systems and to individual rings within these systems. Unique isodesmic, homodesmotic, and hyperhomodesmotic reactions originate from the s‐homodesmotic method. These are used to investigate 12 bicyclic systems comprising cyclopropane and cyclobutane and how the CSE of each system compares to the sum of the individual rings within each. Equilibrium geometries, harmonic vibrational frequencies, and the corresponding electronic energies and zero point vibrational energy corrections are computed for all relevant molecules using second‐order perturbation theory and density functional theory (B3LYP) with the correlation consistent basis sets cc‐pVDZ and cc‐pVTZ. Single‐point CCSD(T) energies are computed at the MP2/cc‐pVTZ optimized geometries to ascertain the importance of higher order correlation effects. Results indicate that CSEs are additive when the two rings are separated by one or two bonds and somewhat additive in other cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.