Abstract

Distributed hydrological models are becoming increasingly complex with respect to spatial phenomena, and with the widespread availability of spatial data from GIS, this trend is likely to increase. In all such models the spatial arrangement of phenomena, such as soil properties and land-use categories is fundamental, and so the arrangement should have an influence on the model output. Testing for this influence we term spatial sensitivity analysis. Here, we report on the spatial sensitivity of two widely used models, AgNPS (agricultural non-point source pollution model) and ANSWERS (areal nonpoint source watershed environment response simulation). The input spatial data were subjected to spatially random mixing to varying degrees, such that the organized landscape became disorganized. The chemical discharge from AgNPS, and the sediment and water discharge from ANSWERS, are examined. In both cases most outputs exhibited little or no sensitivity to the spatial distribution of most input data. Only infiltration-related inputs produced large variations, but these changes were not in the sense that might have been predicted. Although the analytical methods used require further refinement, there must now be some doubt as to the validity of the models, and whether they repay their computational complexity. Furthermore, it is felt that spatial sensitivity analysis should become a fundamental part of the verification of all such models. © 1997 by John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.