Abstract

The hypothesis of lipid rafts describes functional domains in biological membranes. It is often assumed that rafts form by spontaneous de-mixing of certain lipids and that they can be isolated as detergent-resistant membrane particles (DRMs) using the detergent Triton X-100 (TX). Here, we present a model that describes the process of domain formation in membranes in the presence and in the absence of TX. We measure the interactions between TX and an equimolar mixture of sphingomyelin (SM), cholesterol (Cho), and 1-palmitoyl-2-oleoyl-3-sn-glycero-phosphatidylcholine (POPC) (1:1:1, mol) by means of isothermal titration calorimetry. Comparison with pure POPC membranes reveals a very unfavorable interaction between TX and SM/Cho, which causes a substantial tendency to segregate these molecules into separate, DRM-like (SM-rich) and fluid (TX-rich), domains. If rafts are indeed formed by spontaneous de-mixing of PC and SM/Cho, they must be very sensitive, and perturbations caused by techniques used to study rafts could lead to misleading results. If, however, rafts are much more stable than PC–SM–Cho domains, there must be an unknown raft stabilizer. Subtle changes of such a promoter could serve to modulate raft function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.