Abstract
Using the theory of $L^p$-graphons (Borgs et al, 2014), we derive and rigorously justify the continuum limit for systems of differential equations on sparse random graphs. Specifically, we show that the solutions of the initial value problems for the discrete models can be approximated by those of an appropriate nonlocal diffusion equation. Our results apply to a range of spatially extended dynamical models of different physical, biological, social, and economic networks. Importantly, our assumptions cover network topologies featured in many important real-world networks. In particular, we derive the continuum limit for coupled dynamical systems on power law graphs. The latter is the main motivation for this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.